找到Alice和Bob可以相遇的建筑(单调栈+二分)
原题链接
题意: 给定长度为n
的数组表示建筑高度,定义i<j&&height[i]<height[j]
则i
可到达j
;给出q
组询问[a,b]
,问a
和b
能到达的第一个建筑,没有则返回-1
;
思路:
先对q
组询问按两个中较大的数字从大到小排序,然后从后往前枚举数组height
,维护一个单调递减栈,若当前下标i
有相应的一组询问,则取出与i
对应的另一个下标j
,然后在单调栈中二分最近的下标k
使得height[k]>height[j]
,此时该询问对应的答案即为k
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
class Solution {
private:
int solve(const vector<int> &st, const vector<int>& heights, int v) {
if (v >= heights[st[0]])
return -1;
int l = 0, r = st.size() - 1;
while (l < r) {
int mid = (l + r) >> 1;
if (v < heights[st[mid + 1]]) l = mid + 1;
else r = mid;
}
return st[l];
}
public:
vector<int> leftmostBuildingQueries(vector<int>& heights,
vector<vector<int>>& queries
) {
const int n = heights.size(), m = queries.size();
vector<int> qid(m);
for (int i = 0; i < m; i++) {
if (queries[i][0] > queries[i][1])
swap(queries[i][0], queries[i][1]);
qid[i] = i;
}
sort(qid.begin(), qid.end(), [&](int x, int y) {
return queries[x][1] > queries[y][1];
});
vector<int> st, ans(m);
for (int i = n - 1, j = 0; i >= 0; i--) {
while (!st.empty() && heights[i] > heights[st.back()])
st.pop_back();
st.push_back(i);
while (j < m && queries[qid[j]][1] == i) {
int x = queries[qid[j]][0], y = queries[qid[j]][1];
if (x == y || heights[x] < heights[y])
ans[qid[j]] = y;
else
ans[qid[j]] = solve(st, heights, heights[x]);
++j;
}
}
return ans;
}
};
This post is licensed under CC BY 4.0 by the author.